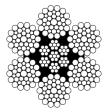
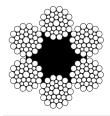


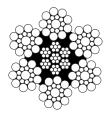
steel wire rope for general purpose

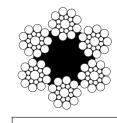




6x36WS

made to EN12835 specifications lay-up of wires 1-7-7+7-14


SWR		IWRC		
dia	Weight	Minimum breaking load		
		1770 N/mm²	1960 N/mm²	2160 N/mm ²
[mm]	[kg/m]	[kN]	[kN]	[kN]
8	0.262	40.3	44.7	-
10	0.409	63.0	69.8	-
12	0.589	90.7	100.5	-
13	0.691	106.5	117.9	-
14	0.802	124.0	137.0	-
16	1.047	161.0	179.0	-
18	1.325	204.0	226.0	-
20	1.636	252.0	279.0	-
22	1.980	305.0	338.0	-
24	2.356	363.0	402.0	-
26	2.765	426.0	472.0	-
28	3.207	494.0	547.0	-
30	3.681	567.0	628.0	-
32	4.188	645.0	715.0	-
34	4.728	728.0	807.0	-
36	5.301	817.0	904.0	-
38	5.906	910.0	1008.0	-
40	6.544	1008.0	1116.0	-
42	7.215	1112.0	1231.0	-
44	7.918	1220.0	1351.0	-
46	8.654	1333.0	1476.0	-
48	9.423	1452.0	1608.0	-
50	10.225	1575.0	1744.0	-
52	11.059	1704.0	1887.0 *	1931.9 *
54	11.926	-	1961.3 *	2167.3 *
56	12.826	-	-	-
58	13.759	-	2196.7 *	2422.2 *
60	15.500	-	2441.8 *	2687.0 *
64	17.300	-	2687.0 *	2951.8 *
68	19.000	-	2932.2 *	3236.2 *
70	20.800	-	3265.6 *	3530.4 *
76	24.700	-	3814.8 *	4167.8 *
84	29.000	-	4383.6 *	4834.7 *


966					
FC					
Weight	Minimum breaking load				
	1770 N/mm ²	1960 N/mm ²			
[kg/m]	[kN]	[kN]			
0.235	37.4	41.4			
0.367	58.4	64.7			
0.528	84.1	93.1			
0.620	98.7	109.3			
0.719	114.0	127.0			
0.940	150.0	166.0			
1.189	189.0	210.0			
1.468	234.0	259.0			
1.776	283.0	313.0			
2.114	336.0	373.0			
2.481	395.0	437.0			
2.877	458.0	507.0			
3.303	526.0	582.0			
3.758	598.0	662.0			
4.243	675.0	748.0			
4.756	757.0	838.0			
5.299	843.0	934.0			
5.872	935.0	1035.0			
6.474	1030.0	1141.0			
7.105	1131.0	1252.0			
7.776	1236.0	1369.0			
8.456	1346.0	1490.0			
9.175	1460.0	1617.0			
9.924	1579.0	1749.0			
-	-	-			
-	-	-			
-					
-	-	-			
-	-	-			
-	-	-			
-	-	-			
-	-	-			
-	-	-			
* manufactured to API 9A specifications					

^{*} manufactured to API 9A specifications

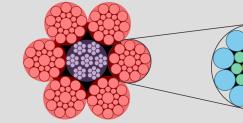
6x19S

made to EN12835 specifications lay-up of wires 1-9-9

SWR	IWRC			
dia	Weight	Minimum breaking load		
		1770 N/mm ²	1960 N/mm ²	2160 N/mm ²
[mm]	[kg/m]	[kN]	[kN]	[kN]
3	-	-	-	-
4	-	-	-	-
5	-	-	-	-
6	-	-	-	-
8	0.256	40.3	44.7	-
10	0.400	63.0	69.8	-
12	0.576	90.7	100.5	-
13	0.676	106.5	117.9	-
14	0.784	124.0	137.0	-
16	1.024	161.0	179.0	-
18	1.296	204.0	226.0	-
20	1.600	252.0	279.0	-
22	1.936	305.0	338.0	-
24	2.304	363.0	402.0	-
26	2.704	426.0	472.0	-
28	3.136	494.0	547.0	-
30	3.600	567.0	628.0	-

FC			
Weight	Minimum breaking load		
	1770 N/mm²	1960 N/mm²	
[kg/m]	[kN]	[kN]	
0.030	4.9	5.2	
0.054	8.7	9.2	
0.084	13.6	14.4	
0.121	19.6	20.7	
0.230	37.4	41.4	
0.359	58.4	64.7	
0.517	84.1	93.1	
0.607	98.7	109.3	
0.704	114.0	127.0	
0.919	150.0	166.0	
1.163	189.0	210.0	
1.436	234.0	259.0	
1.738	283.0	313.0	
2.068	336.0	373.0	
2.427	395.0	437.0	
2.815	458.0	507.0	
3.231	526.0	582.0	

Understanding constructions of steel wire rope example: 6 x 19s IWRC 1960 b sZ


6 = no of strands

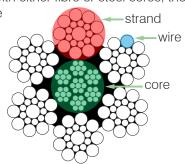
19 = number of wires in each strand

IWRC = type of core 1960 = rope grade

b = drawn galvanised

sZ = right hand ordinary lay

General information



Wire rope is made by spinning individual wires together to form a strand and then closing a number of strands helically around a centre core to form the rope.

Core

Steel wire ropes are supplied with either fibre or steel cores, the choice being dependent on the

choice being dependent on the use for which the rope is intended. The principle function of the core is to provide support to the strands and maintain them in the correct positions under working conditions.

Diameter

Measurements are taken at 2 points at least one meter apart and 2 diameters are measured at 90° one from the other. The average thus obtained is the practical diameter.

Rope grades

Wire ropes are supplied in various Tensile Strength grades to meet the varied requirements on many applications.

Rope	Equivalent
grade	rope
designation	grade
IPS	1770
EIPS	1960
EEIPS	2160

Rope lay

When the wires in the outer strands lie in the same direction as the strands themselves, this is known as Lang's Lay and when they lie in the opposition direction to the strands, this is known as Ordinary or Regular Lay. Ordinary lay ropes are generally used because of their stability, however Lang's lay has increased resistance to abrasion and is more flexible.

right hand ordinary lay sZ

left hand ordinary lay zS

right hand lang's lay zZ

left hand lang's lay sS

Lubrication

Wire ropes are lubricated as protection against oxidization and to reduce friction between wire and strands. During the closing of the rope, all wires and all strands are lubricated. the type of lubrication varies according to the application. Re-lubrication should be carried out periodically to extend the lifespan of the rope.

Galvanising

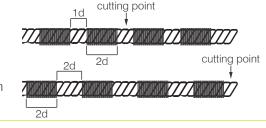
Zinc coating known as galvanising provides sacrificial protection to the underlying steel wire for protection against corrosion, where the rope is exposed to corrosive agents such as salt, water and moisture. Galvanised rope generally has a lower breaking load than bright ropes (uncoated). For hoisting equipment in locations where corrosive conditions are present, heavily lubricated bright ropes are usually preferred to galvanised.

Preformed wire rope

Generally, ropes are supplied preformed. In preformed rope the wires and strands are pre-shaped by running the rope through a preforming head, giving it the helix it takes up, prior to assembly into the finished rope. This prevents the wires from straitening and leaves them relaxed in their normal positions. The benefits of this process are:

- the exposed ends do not untwist
- broken wire ends lie flat
- easy handling during installation
- less prone to kinking and twisting

Rotating resistant ropes should not be regarded as preformed.


Cutting wire rope

When cutting wire rope up to 76mm diameter, a minimum of 2 wire servings, each twice the rope diameter in length and placed one rope diameter apart, should be placed either side of the cutting point.

For wires above 76mm diameter, a minimum of 4 wire servings, each twice the rope diameter in length and placed two rope diameters apart, should be placed either side of the cutting point.

SWR up to 76mm

SWR above 76mm

